Computing dynamics of (gene) regulatory networks

Bernardo Rivas

Department of Mathematics and Statistics University of Toledo

February 2025

B. Rivas (University of Toledo)

February 2025 1 / 49

Motivation

2 Framework

- Step 1: Combinatorial model
- Step 2: Combinatorial dynamics
- Step 3: Continuous dynamics
- Step 4: Validation

3 Applications

Graphical Abstract

(a) p53

(b) Subnetwork of key species of the p53 signaling network

< □ > < 同 > < 回 > < 回 > < 回 >

э

Definition

A regulatory network is a directed graph G = (V, E, W) with a set of vertices V, edges E and a sign function $W : E \to \{+1, -1\}$.

$$\dot{x} = f(x, \lambda)$$

B. Rivas (University of Toledo)

February 2025 5 / 49

Dynamic Signatures Generated by Regulatory Networks (DSGRN)

∃ >

< 47 ▶

æ

Main steps

æ

イロト イヨト イヨト イヨト

Table of Contents

Motivation

Framework

- Step 1: Combinatorial model
- Step 2: Combinatorial dynamics
- Step 3: Continuous dynamics
- Step 4: Validation

3 Applications

Toggle Switch

Toggle Switch

Toggle Switch

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Toggle Switch

< 行

æ

Definition

A wall labeling on a N-dimensional cubical complex $\mathcal X$ consists of

- a function $\omega \colon \mathrm{TP}(\mathcal{X}) \to \{-1, +1\}$
- for each vertex $\xi \in \mathcal{X}^{(0)}$, a map $o_{\xi} : \{1, \ldots, N\} \to \{1, \ldots, N\}$ that tracks changes of ω about vertices ξ .

Wall labeling vs Rook Field

э

Wall labeling vs Rook Field: vector representation

< 行

э

Visualizing $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ on the blow-up complex \mathcal{X}_b

 $\overline{\mathcal{F}_0}:\mathcal{X}\rightrightarrows\mathcal{X}$

 $\mathcal{F}_0:\mathcal{X}\rightrightarrows\mathcal{X}$

< □ > < □ > < □ > < □ > < □ >

э

 $\overline{\mathcal{F}_1}:\mathcal{X}\rightrightarrows\mathcal{X}$

э

<ロト < 四ト < 三ト < 三ト

There are two types of "double-arrows" in \mathcal{F}_1 :

- non-cyclic interactions
- cyclic interactions

 $\mathcal{F}_1:\mathcal{X}\rightrightarrows\mathcal{X}$

 \mathcal{F}_1 vs \mathcal{F}_2

2

 $\overline{\mathcal{F}_2}:\mathcal{X}\rightrightarrows\mathcal{X}$

2

<ロト < 四ト < 三ト < 三ト

 \mathcal{F}_2 vs \mathcal{F}_3

B. Rivas (University of Toledo)

э

<ロト < 四ト < 三ト < 三ト

Regulatory Network

B. Rivas (University of Toledo)

2

ヨト・イヨト

< 47 ▶

æ

Regulatory Network

 $\mathcal{F}_3: \mathcal{X} \rightrightarrows \mathcal{X}$

< 47 ▶

э

Table of Contents

1 Motivation

2

Framework

- Step 1: Combinatorial model
- Step 2: Combinatorial dynamics
- Step 3: Continuous dynamics
- Step 4: Validation

3 Applications

Definition

Let $\mathcal{F} \colon \mathcal{X} \rightrightarrows \mathcal{X}$ be a multivalued map. A set $\mathcal{N} \subseteq \mathcal{X}$ is forward invariant under \mathcal{F} if $\mathcal{F}(\mathcal{N}) \subseteq \mathcal{N}$.

Definition

Let $\mathcal{F} \colon \mathcal{X} \rightrightarrows \mathcal{X}$ be a multivalued map. A set $\mathcal{N} \subseteq \mathcal{X}$ is forward invariant under \mathcal{F} if $\mathcal{F}(\mathcal{N}) \subseteq \mathcal{N}$.

Theorem

The collection of forward invariant sets $Invset^+(\mathcal{F})$ is a distributive lattice under the operations of intersection \cap and union \cup .

Weak condensation graph

Definition

If P is a poset, the downsets of $p \in P$ is given by $O(p) = \{q \in P \mid q \leq p\}$.

Proposition

 $O(\mathsf{SCC}(\mathcal{F}),\leq_{ar{\mathcal{F}}})\cong\mathsf{Invset}^+(\mathcal{F})$

< ∃⇒

Image: A matrix and a matrix

э

Definition (join-irreducible)

Let L be a finite distributive lattice. An element $a \in L$ is *join-irreducible* if it has an unique predecessor. The set of all join-irreducible is $J^{\vee}(L)$.

Theorem (Birkhoff's representation theorem)

 $L\cong O(J^{\vee}(L))$ as lattices and $P\cong J^{\vee}(O(P))$ as posets.

We refer to the isomorphism as λ .

Given a P-grading, that is, $\pi : \mathcal{X}_b^{(N)} \to P$, on the cubical complex \mathcal{X}_b , we can compute a P-graded chain complex on

$$CH_*(p) \cong H_*(\lambda^{-1}(\mathcal{O}(p)), \lambda^{-1}(\mathcal{O}(p)^<); \mathbb{F}),$$

with boundary operator, called connection matrix,

$$\Delta \colon \mathit{CH}_*(p) o igoplus_{q\prec p} \mathit{CH}_{*-1}(p).$$

Example:

3

・ロト ・四ト ・ヨト ・ヨト

Example:

э

< ∃⇒

< 1 k

Example:

Example:

takes the form $\begin{bmatrix} 1\\1 \end{bmatrix}$

25 / 49

Table of Contents

Motivation

2

Framework

- Step 1: Combinatorial model
- Step 2: Combinatorial dynamics

• Step 3: Continuous dynamics

• Step 4: Validation

B Applications

Let $\varphi \colon \mathbb{R} \times X \to X$ be a flow on a compact metric space X.

Image: Image:

э

Let $\varphi \colon \mathbb{R} \times X \to X$ be a flow on a compact metric space X. A set $S \subset X$ is *invariant* if $\varphi(\mathbb{R}, S) = S$.

Image: A matrix

Let $\varphi \colon \mathbb{R} \times X \to X$ be a flow on a compact metric space X. A set $S \subset X$ is *invariant* if $\varphi(\mathbb{R}, S) = S$.

A set $A \subset X$ is an *attractor* if there exists a compact set $K \subset X$ such that

$$A=\omega({\mathcal K},arphi):=igcap_{t\geq 0}{
m cl}(arphi((t,\infty),{\mathcal K}))\subset {
m int}({\mathcal K}).$$

Let $\varphi \colon \mathbb{R} \times X \to X$ be a flow on a compact metric space X. A set $S \subset X$ is *invariant* if $\varphi(\mathbb{R}, S) = S$.

A set $A \subset X$ is an *attractor* if there exists a compact set $K \subset X$ such that

$${\mathcal A}=\omega({\mathcal K},arphi):=igcap_{t\geq 0}{
m cl}(arphi((t,\infty),{\mathcal K}))\subset {
m int}({\mathcal K}).$$

A compact set $K \subset X$ is an *attracting block* for a flow φ if $\varphi(t, K) \subset int(K)$ for all t > 0.

Let $\varphi \colon \mathbb{R} \times X \to X$ be a flow on a compact metric space X. A set $S \subset X$ is *invariant* if $\varphi(\mathbb{R}, S) = S$.

A set $A \subset X$ is an *attractor* if there exists a compact set $K \subset X$ such that

$$A=\omega({\mathcal K},arphi):=igcap_{t\geq 0}{
m cl}(arphi((t,\infty),{\mathcal K}))\subset{
m int}({\mathcal K}).$$

A compact set $K \subset X$ is an *attracting block* for a flow φ if $\varphi(t, K) \subset int(K)$ for all t > 0.

Theorem (Kalies, Mischaikow, Vandervorst)

The set of all attractors of φ , Att (φ) , and the set of attracting blocks, ABlock (φ) are bounded distributive lattices, and

$$egin{aligned} &\omega\colon \mathsf{ABlock}(arphi) o \mathsf{Att}(arphi) \ & \mathcal{K}\mapsto \omega(\mathcal{K}) \end{aligned}$$

is a bounded lattice epimorphism.

When L is a sublattice of ABlock that contains \emptyset and X, $J^{\vee}(L)$ is a Morse decomposition for φ .

When L is a sublattice of ABlock that contains \emptyset and X, $J^{\vee}(L)$ is a Morse decomposition for φ . Let $K_0, K_1 \in ABlock(\varphi)$ and assume that $K_0 \subset K_1$. When L is a sublattice of ABlock that contains \emptyset and X, $J^{\vee}(L)$ is a Morse decomposition for φ .

Let $K_0, K_1 \in \mathsf{ABlock}(\varphi)$ and assume that $K_0 \subset K_1$.

The (homological) Conley index of $S = Inv(K_1 \setminus K_0, \varphi)$ is

 $CH_*(S) := H_*(K_1, K_0; \mathbb{F}).$

Theorem (Conley)

Let S be an isolated invariant set. If $CH_*(S) \neq 0$, then $S \neq \emptyset$.

From combinatorial dynamics to continuous dynamics

Theorem

If a geometric realization $|\cdot| : \mathcal{X}_b \to \mathbb{R}^N$ satisfies certain transversality conditions with respect to the flow, then $K = |\lambda^{-1}(p)|$ is an attracting block for each $p \in P$ and the Conley complex computed in Step 2 is the Conley complex of Step 3.

Table of Contents

Motivation

2

Framework

- Step 1: Combinatorial model
- Step 2: Combinatorial dynamics
- Step 3: Continuous dynamics
- Step 4: Validation

B Applications

ODE models for gene expression

$$\dot{x}_n = -\gamma_n x_n + \dots$$

< 行

æ

Let $\dot{x} = -\Gamma x + E(x; \nu, \theta, h)$ be a ramp system with fixed parameters.

Let $\dot{x} = -\Gamma x + E(x; \nu, \theta, h)$ be a ramp system with fixed parameters.

Remark: To go from Ramp Systems to Wall Labelings, it is enough to evaluate the vector field at $\theta \pm h$.

If h satisfies

$$\theta_{m_{k},n,j_{k}} + h_{m_{k},n,j_{k}} < \theta_{m_{k+1},n,j_{k+1}} - h_{m_{k+1},n,j_{k+1}},$$

$$\frac{E_{n}(D_{\mathbf{v}})}{\gamma_{n}} \notin \left[\theta_{m_{k_{n}},n,j_{k_{n}}}, \theta_{m_{k_{n}},n,j_{k_{n}}} + h_{m_{k_{n}},n,j_{k_{n}}}\right),$$

$$(2)$$

and

$$\frac{E_n(D_{\mathbf{v}})}{\gamma_n} \notin \left(\theta_{m_{k_n+1},n,j_{k_n+1}} - h_{m_{k_n+1},n,j_{k_n+1}}, \theta_{m_{k_n+1},n,j_{k_n+1}}\right],\tag{3}$$

- (日)

February 2025

33 / 49

then there is a geometrization where the flow is transverse.

Geometric realization for \mathcal{F}_1

Image: A matrix and a matrix

æ

It involves the construction of a perturbed surface and the following type of analytical bounds

(i) Outer transversality:

$$2h_{n_o,n_g,j_{k_{n_g}}} < \frac{L_{n_g}}{U_{n_o}} \frac{\operatorname{length}(\xi')}{2}.$$
(4)

(ii) Inner transversality:

$$2h_{n_o,n_g,j_{k_{n_g}}} < \frac{L_{n_g}}{U_{n_o}} 2h_{o_{\xi}(n_o),n_o,j_{k_{n_o}}}.$$
(5)

where L_n , U_n are lower/upper values that depend on the parameters.

Theorem

If $\dot{x} = -\Gamma x + E(x; \nu, \theta, h)$, then, in some rectangular region,

- $\dot{x}_n = -\gamma_n x_n + f_n(x_{\sigma^{-1}(n)})$ is a monotone cyclic feedback system.
- There is an unique equilibrium whose eigenvalues of the linearization satisfy

$$\chi(\lambda) = \prod (-\gamma_n - \lambda) - \frac{(-1)^k \delta C(\nu)}{\prod h_{\sigma(n), n}}$$

э

Theorem

If $\dot{x} = -\Gamma x + E(x; \nu, \theta, h)$, then, in some rectangular region,

- $\dot{x}_n = -\gamma_n x_n + f_n(x_{\sigma^{-1}(n)})$ is a monotone cyclic feedback system.
- There is an unique equilibrium whose eigenvalues of the linearization satisfy

$$\chi(\lambda) = \prod (-\gamma_n - \lambda) - \frac{(-1)^k \delta C(\nu)}{\prod h_{\sigma(n), n}}$$

Tranversality is obtained in two flavors, either by

- level-sets of Lyapunov functions,
- **2** or similar arguments to \mathcal{F}_2 (outer/inner transversality).

Geometric realization for N = 2

(b) Geometrization of \mathcal{X}_J for $\delta_{o_{\xi}} = -1$.

<ロ> <四> <四> <四> <四> <四</p>

Geometric realization for N = 2

(a) \mathcal{X}_J with π_3 -grading for $\delta_{o_{\xi}} = 1$.

イロト イポト イヨト イヨト

æ

The software Dynamic Signature of Gene Regulatory Networks provides all possible wall-labelings associated to a ${\rm GRN.}^1$

¹up to a certain number of in and out edges.

The software Dynamic Signature of Gene Regulatory Networks provides all possible wall-labelings associated to a ${\rm GRN.}^1$

This is possible by discretizing the whole parameter space into a finite collection of semi-algebraic sets.

¹up to a certain number of in and out edges.

The software Dynamic Signature of Gene Regulatory Networks provides all possible wall-labelings associated to a ${\rm GRN.}^1$

This is possible by discretizing the whole parameter space into a finite collection of semi-algebraic sets.

Given any region, our computation provides a complete description of its dynamics in terms of Conley Index Theory for sufficiently small h.

¹up to a certain number of in and out edges.

2D dimensional example: 1,600 parameter regions

< 行

	$ u_{1,1,1} = 1.01 $	$ u_{1,1,2} = 4.0 $	$ u_{1,2,1} = 1.0 $	$ u_{1,2,2} = 4.0 $	$\nu_{1,3,1} = 1.0$	$\nu_{1,3,2} = 2.0$
$x_1 = -\gamma_1 x_1 + r_{1,1}(x_1) + r_{1,2}(x_2) + r_{1,3}(x_3)$	$\nu_{2,1,1}=0.875$	$\nu_{2,1,2}=0.797$	$\nu_{2,2,1} = 0.22$	$\nu_{2,2,2}=0.875$	$\nu_{2,3,1} = 0.44$	$\nu_{2,3,2}=0.875$
$\dot{x}_2 = -\gamma_2 x_2 + r_{2,1}(x_1) \left(r_{2,2}(x_2) + r_{2,3}(x_3) \right)$	$\nu_{3,1,1} = 0.76$	$ u_{3,1,2} = 1.0 $	$ u_{3,2,1} = 1.0 $	$\nu_{3,2,2} = 0.85$	$\nu_{3,3,1} = 0.5$	$ u_{3,3,2} = 1.0 $
	$\theta_{1,1} = 6.5$	$\theta_{1,2} = 1.497$	$\theta_{1,3} = 1.87$	$\theta_{2,1} = 8.0$	$\theta_{2,2} = 1.0$	$\theta_{2,3} = 1.16$
$\dot{x}_3 = -\gamma_3 x_3 + r_{3,2}(x_2) \left(r_{3,1}(x_1) + r_{3,3}(x_3) \right),$	$\theta_{3,1}=3.5$	$\theta_{3,2} = 1.46$	$ heta_{3,3}=1.61$	$\gamma_1=\gamma_2=1$	$\gamma_3=1.2$	$h_{i,j} = 0.1$

parameter node 52, 718, 681, 992

イロト イヨト イヨト イヨト

æ

$$\begin{split} \dot{x}_1 &= -\gamma_1 x_1 + r_{1,1}(x_1) r_{1,2}(x_2) r_{1,3}(x_3) \\ \dot{x}_2 &= -\gamma_2 x_2 + r_{2,1}(x_1) r_{2,2}(x_2) \\ \dot{x}_3 &= -\gamma_3 x_3 + r_{3,2}(x_2) r_{3,3}(x_3), \end{split}$$

$\nu_{1,1,1} = 1.80$	$\nu_{1,1,2} = 8.56$	$\nu_{1,2,1} = 13.07$	$\nu_{1,2,2} = 3.25$	$\nu_{1,3,1} = 20.10$	$\nu_{1,3,2} = 1.07$
$\nu_{2,1,1} = 2.44$	$\nu_{2,1,2} = 0.84$	$\nu_{2,2,1} = 0.16$	$\nu_{2,2,2} = 6.10$	$\nu_{3,2,1} = 2.39$	$\nu_{3,2,2} = 1.36$
$\nu_{3,3,1} = 0.05$	$\nu_{3,3,2} = 5.03$	$\theta_{1,1}=27.17$	$\theta_{1,2} = 2.26$	$\theta_{1,3} = 11.73$	$\theta_{2,1}=39.10$
$\theta_{2,2}=1.25$	$\theta_{3,2}=10.47$	$\theta_{3,3}=6.70$	$\gamma_1=1$	$\gamma_2 = \gamma_3 = 0.5$	$h_{i,j} = 0.5$

イロト イヨト イヨト

э

6D dimensional example

Regulatory network for reversible epithelial-to-mesenchymal transition as proposed by T. Hong, K. Watanabe, C.H. Ta, A. Villarreal-Ponce, Q. Nie, and X. Dai, An ovol2-zeb1 mutual inhibitory circuit governs epithelial-mesenchymal transitions, PLOS Comput. Biol. 11 (2015)

58 dim parameter space

Figure: Morse graph for the map \mathcal{F}_3 generated by the parameter node 52, 717, 613, 010.

58 dim parameter space and 4,429,771,960,320 parameter regions.

3 1 4 3 1

Image: A matrix and a matrix

Parameter node 1, 739, 757, 491, 101

Figure: Morse graph for the map \mathcal{F}_2 generated by the parameter node 1,739,757,491,101 of the parameter graph of the network in Figure 43.

In this example there are 17 equilibria, all identified by the morse sets.

Hill Systems

Hill functions

$$\begin{aligned} \dot{x}_1 &= -\gamma_1 x_1 + H^-_{1,1}(x_1) H^-_{1,2}(x_2) \\ \dot{x}_2 &= -\gamma_2 x_2 + H^-_{2,1}(x_1) H^-_{2,2}(x_2), \end{aligned}$$

$$H^{-}_{i,j}(x) =
u_{i,j,2} + (
u_{i,j,1} -
u_{i,j,2}) rac{ heta^{s_{i,j}}_{i,j}}{x^{s_{i,j}} + heta^{s_{i,j}}_{i,j}},$$

 $\begin{array}{l} \nu_{1,1,1}=1.8662, \ \nu_{1,1,2}=1.1061, \ \theta_{1,1}=0.6927\\ \nu_{1,2,1}=1.1705, \ \nu_{1,2,2}=0.2608, \ \theta_{1,2}=1.9914\\ \nu_{2,1,1}=2.8064, \ \nu_{2,1,2}=0.1614, \ \theta_{2,1}=1.1436\\ \nu_{2,2,1}=0.7340, \ \nu_{2,2,2}=0.6581, \ \theta_{2,2}=0.4310\\ \gamma_1=0.8147, \ \gamma_2=0.9058, \ s_{i,j}=20. \end{array}$

< □ > < 同 > < 回 > < 回 > < 回 >

Ramp Approximations of ODEs: Van der Pol oscillator

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + (1 - x_1^2)x_2$

$$\dot{x}_1 = -\gamma_1 x_1 + r_{1,1}(x_1) + r_{1,2}(x_2)$$

$$\dot{x}_2 = -\gamma_2 x_2 + r_{2,1}(x_1) + r_{2,2}(x_2)$$

Rutgers:

- K. Mischaikow
- M. Gameiro
- E. Vieira
- D. Gameiro

Toledo:

• W. Kalies

Montana State:

- T. Gedeon
- B. Cummins

Kyoto:

• H. Kokubu

< 1 k

• H. Oka

э

Thank you for your attention! Questions?

ヨト イヨト

Image: A matrix and a matrix

æ